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tability analysis is a powerful tool for understanding the long-term behavior of epidemiological mo
ely used to study the spread of infectious diseases such as COVID-19. In this paper, we present a fin
lysis of a stochastic susceptible-infected-recovered (SIR) epidemic compartmental model with s
model includes a linear parameter variation (LPV) and switching system that represents the im
rs, such as changes in public health policies or seasonal variations, on the transmission rate of the
yapunov stability theory to examine the long-term behavior of the model and determine conditio
ease is likely to die out or persist in the population. By taking advantage of the average dwell time
v functional (LF) method, and using novel inequality techniques the finite-time stability (FTS) cri
inequalities (LMIs) is developed. The finite-time stability of the resultant closed-loop system, with
rameter variation (LPV), is then guaranteed by state feedback controllers. By analyzing the mod
hese interventions, we are able to examine the efficiency of different control measures and determ
riate response to the COVID-19 pandemic and demonstrate the efficacy of the suggested strategy
sults.

yapunov method, Linear matrix inequalities, Finite-time stability, Switching signal, Stochastic

tion

ID-19 pandemic has had a significant impact
eing of individuals and economies globally.
ontrol the spread of the virus, it is crucial
d the transmission mechanisms and develop
tegies to prevent further spread. This in-
res such as personal protective equipment,
cing, and vaccination efforts [1, 2]. Addi-
king the spread of the virus and collecting
utbreak is crucial in understanding the evo-
pandemic and guiding public health inter-
dels to analyze the spread of diseases, such
tible-infected-recovered (SIR) epidemic com-
odel, are commonly used to understand in-
ses and inform public health decisions. The
a new coronavirus, known as SARS-CoV-2,
in China in late 2019 and is the cause of the
andemic [1, 3, 4]. However, much remains
ut the virus, including the incubation period
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for the COVID-19 symptoms. To fully underst
impact of SARS-CoV-2 and make informed decis
crucial to gather more information about its epid
ical features, such as transmission dynamics, in
period, and mortality rate. Further studies are n
gain a more complete understanding of this nov
This has important implications for surveillance
trol activities [2, 5]. Despite some countries su
in controlling the virus’s spread, others have seen
trollable outbreaks. To address the situation, a clo
control system, which adjusts the input based on t
tored output, may be a viable solution. The pand
brought unprecedented challenges, but solutions
closed-loop control systems offer hope for effectiv
aging the spread of COVID-19 [6]. This system
authorities monitor the situation and make neces
justments in real-time to achieve the desired outco
plementing such a system can help mitigate the im
the pandemic and bring the situation under contr
ing to faster recovery for communities and the glob
omy. In the context of controlling the spread of CO
a closed-loop control system (see Figures 1-2) coul
continuously monitoring the number of cases, dea
other relevant metrics, and using this informatio
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just public health interventions such as mask mandates,
social distancing measures, and vaccination efforts.
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ure 1: The structure of COVID-19 virus.

Figure 2: Closed-loop of COVID-19.

le, if the number of cases is increasing rapidly,
ystem could implement stricter mask man-
l distancing measures in an effort to slow the
disease. On the other hand, if the number

creasing, the control system could relax these
llow for a gradual return to normalcy [7, 8].
sly monitoring the output and adjusting the
ngly, the closed-loop control system can help
he spread of the disease at a manageable level.
decades, epidemiology has been defined as
disease spread with the goal of tracking the
t are essential for its development. Mathe-
ls are widely utilized in the investigation of
al issues. Most of the models for infectious
mission descended from the conventional SIR
was proposed in 1927 (see [9]). Recently,

various versions of the mathematical model
ion of infectious diseases, known as SIR epi-
, has a long history, and all these approaches
current and widely known in research (see, for
11, 12, 13]). Epidemic models are influenced
ental noise, which is an important factor in
ay result in a more realistic outcome than
models. Recent advancements in stochastic
uations allow the inclusion of stochastic ele-
odels of biological events, whether it is ran-
the differential equation system or variations

ations influenced by stochastic external factors. R
has been done on stochastic biological systems,
in [14, 15]. The proposed approach, which inco
real-time data into outbreak disease progression
tions and constant updates, can provide a more
short-term forecast compared to the traditional me
theoretic SIR model. This is because the limited
edge of the incubation time and virus exposure
impact on forecasting the progression of the pand
fection.

Research supports the use of pulsed interventi
ticularly in seasonal infectious diseases such as i
and childhood diseases (measles, chickenpox, and
where seasonal changes initiate periodic epidemi
with an annual pattern. The switching theory h
shown to be suitable as a model of seasonal forcin
demiology, as shown in various articles (see, for e
[16, 17, 18, 19]). However, a significant distinction
these and our study is that we suggest and conc
justify switching to considerably minimum time
Recently, a publication [20] in response to the
19 pandemic proposed irregular, non-periodic qu
measures with extended lockdown duration’s. To
the impact of this approach, we develop a finite-
namics model that takes into account the param
the proposed system. Using this model, we estim
number of infections, deaths, and recoveries over
fied number of future days. This model can prov
able information on the efficacy of proposed qu
measures and inform decision-making about the p
response.

Finite-time (FT) stability analysis, introduced
rato in 1961 [21], is a useful method for analyzin
tem’s transient response. A system is considered
ble if its state stays within a specified threshold
set time frame, given an initial condition constrai
punov theory and linear matrix inequalities (LM
made significant advances in the stability analysi
ous systems, including linear continuous systems (
[22, 23, 24, 25]), and discrete systems (see, e.g., [
Stability is one of the most important things to
dynamic systems. Most research on stability fo
asymptotic or exponential stability, which is stab
an infinite amount of time [28, 29, 30]. However
eral potential implementations, the key issue is
stability of a system, which helps to maintain th
behavior/state within the required boundaries in
fied FT interval ( see [31, 32, 33]). Furthermore
proach and the model of switched systems have c
received more interest, as switched systems may be
to represent a variety of important plants with
ing [28, 29, 30]. In [34], the authors exploited n
impulsive switching systems to implement finite-t
dynamic output feedback control. Authors in [
posed finite-time stability of switched positive lin
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tems. The authors established the asymptotic behavior of
a regime-switching SIR epidemic model with degenerate
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6].
lopment of efficient methods for FT stabil-
ased on Lyapunov theory and LMIs, has in-
racticality of this approach. These advance-
llowed for the analysis of a wider range of sys-
e provided useful insights into the transient
ese systems. Recently, the authors described
c switching SIRS epidemic model with non-
ce and vaccination: Stationary distribution
n in [37]. Despite the fact that an analytical
partmental issues allows for the use of known
ability analysis, and switched systems, there
table prerequisites for establishing stability
nov sense in biological systems.
an autonomous LPV (Linear Parameter Vary-
s a type of dynamic system that can be mod-
lyzed using linear mathematical models. The
tinuous-time space-state formulation of an
is a mathematical representation of the sys-
or in terms of its states and inputs, and how
over time (see [38, 39, 40, 41]). It is well
the aggressive control measures and policies
er screening, mask wearing, quarantine, iso-
play an important role in administering effi-
tions which control disease spread and hope-
te epidemic diseases. The LPV framework
sed to model and control systems with un-
ying over time, such as unmodeled dynamics,
and parameter variations. In addition to its
abilities, the LPV framework also provides
powerful framework for control design and
example, LPV systems can be used to design
at are robust to uncertainty and variations
parameters (see [42, 43, 44]). This can be
g robust control techniques, such as linear
alities (LMIs) and semidefinite programming
COVID-19 LPV model in [6] was proposed
is functions and showed to be useful for sta-
ent and controller design. Up to now, SIR
del has been studied with various types of
lysis, but the FT stability analysis for the
R model has not been well studied, which
present work.
by the above works, a stochastic SIR epi-
is a variant of the SIR model that incorpo-
tic elements, such as random fluctuations in
sion rate of the disease. These fluctuations
ented by a noise term added to the transition
proposed model. The main novelties of our
below.

gested SIR model is quite extensive, and the
d stochastic differential equations drive its
cs. And most other of the existing works
, 36, 45, 46] can be respected as a special

stochastic disturbance, control effect, and u
parameters.

• Different from exponential/asymptotic stabi
ysis on infinite-time interval and design in
37]. In our paper, the FT stability criterion o
stochastic SIR model is obtained, which is
alistic and theoretical. The way the system
over a short period of time is particularly c
some epidemic models.

• Good control system should ensure highe
mance in addition to stability. However,
gested model makes use of state-feedback
To the best of the author’s knowledge, thi
the first time to examine finite-time stability
for the stochastic SIR epidemic model.

• For the FT stability analysis of the propose
model with switching approaches, acceptabl
developed using integral inequality techniq
several new suitable criteria, which may be e
in terms of linear matrix inequalities (LMIs

• Numerical simulations are provided as a las
show the efficacy and application of the id
sented. Some standard notations and thei
cations are given in Table 1.

Notations Specification

Rn Euclidean space of n dimensions
Rm×n The real m× n matrices
P > 0 P is symmetric and positive-definit
P ≥ 0 P is symmetric and positive semi-d
PT P represents the transpose of the m

Table 1: Notations and specifications.

2. Mathematical Modeling of SIR

The proposed control method is rooted in the n
dynamics of SIR models, a widely studied comp
tal approach in epidemic modeling. The SIR m
simple compartmental model that divides the po
into groups with similar characteristics, making it
model infectious diseases. This specific strategy fo
the deterministic version of the SIR model, whic
as a building block for more complex models.

The diagram in Figure 3 depicts the flow of pe
tween different categories during an outbreak, as
by the SIR model. According to the model, individ
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Figure 3: Schematic diagram of SIR.

disease and a subset of them may gain immu-
oning into the R compartment which repre-
ith immunity. Before delving into the details
ion parameters, it is important to establish
standing of the dynamics of the SIR model.
done by using a differential equation, which
athematical description of the relationships
ariables involved in the model. Let us define
ependent variables in Table 2:

iables Meaning
The susceptible individuals at t
The infected individuals at t
The recovered individuals at t

le 2: State variables and their meanings.

SIR model is of the form

(t)

t
= A− βS(t)I(t)

1 + kI(t)
− δS(t),

(t)

t
=

βS(t)I(t)

1 + kI(t)
− (δ + γ + ϵ)I(t),

(t)

dt
= γI(t)− δR(t),

0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0.

(1)

(0), and R(0) are the initial population size
tible, infected, and recovered individuals. It
hat the total population, denoted by N , is
equal to the sum of these three categories:
R(t) = N . The parameters in the model (1)
ed in Table 3:

r Meaning
The influx of individuals into S
The transmission coefficient between
compartments S and I
The value of inhibitory effect
The natural death rate of S, I and R
compartments
The rate of recovery from infection
The disease-induced mortality rate

able 3: Explanation of the parameters.

rameter β represents the contact rate, which
lated as the average number of contacts per
per time multiplied by the probability of dis-
nsmission in contact between a susceptible
infected individual.

it has a ’psychological’ or inhibitory effec
transmission of the disease [47]. The valu
effect is measured by the parameter k.

• The parameter γ plays a crucial role in
model as it represents the transition rate
infected class to the recovered or immune
is calculated by dividing the number of ind
who recover or die within a day by the to
ber of infected individuals at that time. T
is expressed as γ = 1/D, where D is the l
time that an individual is infected. Under
the value of γ is important, as it provides
tion on the rate at which the infected popu
decreasing and the rate at which the recove
ulation is increasing.

In [48], the authors studied the model (1) with
medical resources. Since we have explained the
production ratio before for the SIR model, using
generation method in [49], R0 is given by

R0 =
βA

δ(δ + γ + ϵ)
.

The value of R0 determines the possible sprea
disease within a population. If R0 ≤ 1, it means
average, an infected individual will infect fewer t
other person, and the disease will eventually die ou
ever, if R0 > 1, it means that an infected indivi
infect more than one other person, and the disease
come endemic. To understand the dynamics of th
spread, it is enough to focus on the first two equ
(1), as they do not depend on the number of r
individuals. We can gain insight into the interac
tween susceptible and infected populations by a
the subsystem which is

dS

dt
= A− βSI

1 + kI
− δS,

dI

dt
=

βSI

1 + kI
− (δ + γ + ϵ)I,

S(0) ≥ 0, I(0) ≥ 0.

Further, the effective reproductive number,
measure of the average number of secondary case
ated by one infectious case during an epidemic.
culate this number, the basic reproductive ratio
tiplied by the number of susceptible individuals
t, represented as Re = R0 ∗ (S(0)/N). When t
of R0 ∗ (S(0)/N) < 1, it indicates that an infec
vidual is spreading the disease to fewer than on
on average, leading to a long-term decrease in t
ber of infectious individuals, referred to as a dis
equilibrium. Model (2) always has a unique dis
equilibrium at E0 = (A/δ, 0). The situation chang
R0∗(S(0)/N) > 1. This means that on average an
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ak. For example, in the case of COVID-19,
it is possible for the virus to be transmitted

to person.

e and Stability of Equilibria

e

ological point of view, it is interesting to de-
isease-free equilibrium and the co-existence
uilibrium such that a population is a positive
e disease-free equilibrium E0 = (Aδ , 0) is al-
When R0 > 1, the model (2) has a unique
librium E∗ = (S∗, I∗). It is achieved by solv-
ing equations.

− δS∗ = 0,
βS∗

1 + kI∗
− (δ + γ + ϵ) = 0, (3)

(S∗, I∗)(
Ak + δ + γ + ϵ

β + δk
,
βA− δ(δ + γ + ϵ)

(δ + γ + ϵ)(β + kδ)

)

(
Ak + δ + γ + ϵ

β + δk
,

(R0 − 1)βA

R0(δ + γ + ϵ)(β + kδ)

)
.

1. • If R0 ≤ 1, then (2) has no endemic
ia.

1, then (2) has a unique endemic equilibrium
I∗).

bility

2. For (2), we have

ease-free equilibrium E0 is locally asymptoti-
able if R0 < 1 and unstable if R0 > 1.

1, then the endemic equilibrium E∗ is locally
otically stable.

Jacobian matrix at E0 is given by
(

−δ −βA
δ

0 βA
δ − (δ + γ + ϵ)

)
.

asymptotically stable if and only if all eigen-
have a negative real part. The eigenvalues
ined by solving the following.

δ − λ −βA
δ

0 βA
δ − (δ + γ + ϵ)− λ

)
= 0.

at the eigenvalues are: λ1 = −δ, λ2 = βA
δ −

nce λ1 and λ2 are negative, it is required that

βA

δ
< (δ + γ + ϵ),

The Jacobian matrix at E∗ is given by

JE∗ =

(
−δ − βI∗

1+kI∗
−βS∗

(1+kI∗)2
βI∗

1+kI∗ − βkS∗I∗

(1+kI∗)2

)
.

The eigenvalues can be determined by solving th
ing.

det

(
−δ − βI∗

1+kI∗ − λ −βS∗

(1+kI∗)2
βI∗

1+kI∗ − βkS∗I∗

(1+kI∗)2 − λ

)
=

The characteristic polynomial is given by:

λ2 − trace(JE∗)λ+ det(JE∗) = 0.

When R0 > 1, it is clear that

trace(JE∗) = −δ − βI∗

1 + kI∗
− βkS∗I∗

(1 + kI∗)2
<

and

det(JE∗) =
(
δ + βI∗

1+kI∗

)(
βkS∗I∗

(1+kI∗)2

)

+
(

βS∗

(1+kI∗)2

)(
βI∗

1+kI∗

)
> 0,

by the Routh-Hurwitz criterion, the real parts of
ues are negative, then E∗ is locally asymptoticall

Next, let us take the default values of the paramet
[48] as

A = 16, β = 0.01, k = 0.001,

δ = 0.1, γ = 0.12, ϵ = 0.2.

To start, we need to determine a valid range of
ters for the model (2). One way to do this is to cho
cific values for the parameters in (4) such that th
ing equilibrium point has positive values. This
that the system remains biologically meaningful.
more, the phase portrait is depicted for the dete
model (2) with the values in (4) has the reproduc
R0 = 3.80952 > 1 for β = 0.01 and there exists an
equilibrium E∗, which states that the diseased po
will persist is shown in Figure 4. The equilibriu
globally asymptotically stable, which implies that
ease will eventually spread. Also, for the value β
the disease will die out such that R0 = 0.952381
the endemic equilibrium disappears, only the dis
equilibrium exists as shown in Figure 5. Stable d
in the time series plot for susceptible, infected, an
ered populations are depicted in Figs. 6, 7, and 8

In the next section, we will examine the stoch
terministic SIR model.
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n values. Because of this, there is growing in-
hastic epidemic models that incorporate ran-
stochastic. Stochastic epidemic models can
re realistic perspective compared to their de-
unterparts (see [11, 50, 51]). Stochastic mod-
dress the uncertainties in epidemic models by
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Figure 7: The time series for the infected individuals of
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susceptible to environmental changes, the parame
in epidemic models are not constant and may
around typical values. This results in a more rea
piction of the spread of disease, compared to dete
models [52]. As a result, an increasing number o
are turning to stochastic epidemic models to mo
rately reflect the spread of disease in the face of
mental uncertainty [53, 45]. Studies have shown th
models can provide a deeper level of understandin
dynamics of disease spread, and are crucial in th
opment of effective disease control strategies (see

In this study, the approach taken is similar
of a previous study by [11], where the authors
that the external noise was proportional to the v
We also assume that the stochastic perturbation
model are of the white noise type, meaning that
directly proportional to the susceptible and infec
ulations and affect the rate of change of these pop
To account for the impact of a changing environm
include stochastic perturbation terms in the equa
the growth of the susceptible and infected pop
This leads to the following stochastic SIR model
flects the model (2) with added environmental no

dS =

(
A− βSI

1 + kI
− δS

)
dt+ σ1SdB1(t),

dI =

(
βSI

1 + kI
− (δ + γ + ϵ)I

)
dt+ σ2IdB2(t

6
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are proportional to susceptible and infected
nd influence their growth rates. To repre-
uence, a stochastic differential equation is
e equation includes terms for the intensity
ntal oscillations, represented by σ1 and σ2,
nstant and known. Additionally, the equa-
independent standard Brownian motions, de-
t) and B2(t). The stochastic model does not
ve equilibrium. Therefore, it is not possible
te the persistence of the model by demon-
tability of a positive equilibrium, as is done
inistic model. The stationary distribution,
as the solution fluctuates in the vicinity of
m point of the related deterministic model,
d as a form of stability in a weak sense.
cted repeated simulations for the scenario in
pulation in the model (2) coexist. We kept
s constant as in Figure 4 during these sim-
generated numerical results. The solution of
c model (5) with very small white σ1,2 = 0.01
mall fluctuations in the trajectories given in
ich is close to the trajectories of the deter-
el (2) as in Figs. 6 and 7. As the intensity of
dually increases, we find that the population
The three solution paths of the stochastic

th white noise σ1,2 = 0.01 and its trajecto-
n in Figure 10. For the larger white noise
he model (5) trajectories have higher fluctu-
trajectories plotted in Figure 11. And the

g density function for σ1,2 = 0.1 shows that
infected population is concentrated near 25,
ill persist in the population as shown in Fig-
arly, for σ1,2 = 0.5, there are very high fluctu-
trajectories even the infected population size
200, eventually, most of the infected popula-
ar zero as given in Figure 13 and its corre-
sity function is given in Figure 14. However,
at both populations will survive and persist
ce of suitable environmental white noise.
strength of white noise is increased, the dis-
tion dies away (see Figure 13). The mean of
ls at σ1,2 = 0.5 and its corresponding density
plotted in Figs. 15 and 16. The standard de-
individuals at σ1,2 = 0.5 and its correspond-
nction are plotted in Figs. 17 and 18. Both
standard deviation of the individuals show

ase will persist in the population. Figure 10
that small white noise can make the model
In summary, the addition of environmental
ulation models can provide a more realistic
n of the dynamics of real-world populations.
f our study suggest that the intensity of en-
oise can greatly impact the behavior of pop-
lower levels of noise potentially promoting

d higher levels of noise suppressing outbreaks.

demonstrate the complex nature of populations in
world.
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Figure 9: Solution curves of the model (5) with σ1,2 = 0
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Figure 10: Three solution curves of the model (5) with σ1
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We can rephrase the statement as follows:
namic behavior of the susceptible and infected pop
can be described by a state vector x(t) = [S∗(t)′,
and the linear parameter-varying (LPV) system
sented by the Jacobian matrix near the equilibriu
The stability of the equilibrium point of the LPV
is determined by the eigenvalues of the Jacobian
which are functions of the system parameters. If a
values of the Jacobian matrix have negative real p
equilibrium point is considered stable, and the po
will remain in the neighborhood of the equilibriu
over time. On the contrary, if any eigenvalue has a
real part, the equilibrium point is unstable, and
ulation will diverge from the equilibrium over tim
stability of the equilibrium point is important in d
ing the persistence or extinction of populations.

JE∗ =

(
−δ − βI∗

1+kI∗
−βS∗

(1+kI∗)2
βI∗

1+kI∗ − βkS∗I∗

(1+kI∗)2

)
,
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[
S∗(t)

I∗(t)

]
. (6)

m’s state space representation takes into ac-
te vector x(t), which consists of the suscep-
ected populations, and the Jacobian matrix
rns the dynamics of the states in the vicinity
rium point. This Jacobian matrix is time-
depends on the time-varying parameters θ(t)
d can be represented in polytopic or affine

ẋ(t) =A(θ(t))x(t), (7)

ix A(θ(t)) can be described in two ways, as
the literature, either by means of an affine
or a polytopic one. The polytopic descrip-
by combining m known vertices into a single

tion.

A(θ(t)) =
N∑

j=1

θj(t)Aj , θ(t) ∈ Ω, (8)

1, 2, ..., N is the polytope vertices and θ(t) =
.., θN (t)) denotes a vector of time-varying pa-
nging to a compact set known as unit sim-
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Figure 13: Solution curves for the model (5) with with
σ1,2 = 0.5, initial values S(0) = 20, I(0) = 2, and all ot
are given in (4).

Figure 14: The histogram of the stochastic model (5) with σ

plex, which is given by

Ω =

{
θ

∣∣∣∣
N∑

j=1

θj = 1, θj ≥ 0, j = 1, 2, ..., N

}

The dynamic matrix A(θ(t)) can be represent
an affine form with N interval time-varying param
follows:

A(θ(t)) = A0 +

N∑

j=1

θj(t)Aj , θj(t) ∈ [θLj , θUj ],

where Aj, j = 1, 2, ..., N is the known matrices a
are time-varying parameters with given lower an
bounds provided by θLj and θUj , respectively. T
topic form of the dynamic matrix A(θ(t)) of the L
tem (6) is given by (7).

A(θ(t)) = θ1(t)

[
−β(IL + ρ) −(γL + ρ)

βIL 0

]

+ θ2(t)

[
−β(IU + ρ) −(γL + ρ)

βIU 0

]

+ θ3(t)

[
−β(IL + ρ) −(γU + ρ)

βIL 0

]

8
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+ θ4(t)

[
−β(IU + ρ) −(γU + ρ)

βIU 0

]
,

(θ1(t), θ2(t), · · · , θ4(t)) ∈ Ω. Moreover, using
, we get

βρ −ρ

0 0

]
+ θ1(t)

[
0 −1

0 0

]
+ θ2(t)

[
−β 0

β 0

]
,

[0.25, 0.4] and θ2(t) ∈ [−0.22, 0.9091].
consider the state-space description of the
V system to be expressed as follows:

(t) =(A(θ(t))x(t))dt+ Cx(t)dw(t). (11)

system (11) has parameter matrices Ai(θ(t))
initial state is represented by x0. The noise
e system is modeled as a Wiener process or
tion, denoted as w(·). This process is charac-
tationary independent differential increment
eans and is represented by dw(t) = ξ(t)dt,
t)] = 0, t ∈ Ω. The state space represen-
tochastic switched linear parameter-varying
tem is given by a set of linear dynamic equa-
me-dependent parameters that influence the
ystem. These parameters enter the equation
ogenous inputs. The SSLPV system’s state
described by a set of matrices, including the
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Figure 17: The evolution in time of the standard deviati
individuals over 1,000 trajectories with σ1,2 = 0.5.

Figure 18: The histogram of the standard deviation for th
uals over 1,000 trajectories with σ1,2 = 0.5.

parameter matrices Ai(θ(t)) and C , and the init
x0. The system also includes a stochastic proc
represented by dw(t) = ξ(t)dt, which is characte
a stationary independent differential increment w
means and is typically modeled as a Wiener pr
Brownian motion.

dx(t) =
[
Aσ(t)(θ(t))x(t) + Bσ(t)u(t)

]
dt

+ Cx(t)dw(t), t ∈ [t0, T ] = Ω,

x(t0) =x0 ∈ Rn,

where x(t) = [x1(t), x2(t), · · · , xn(t)]
T ∈ Rn re

the state vector. The control input vector is u(t
Aσ(t)(θ(t)) ∈ Rn×n, Bσ(t) ∈ Rn×m and C ∈ R
the real constant matrices, respectively; σ(t) :
{1, 2, · · · , N} denotes the switching signal. which
ministic, piecewise constant, and right continuou
t ∈ [tk, tk+1), subsystem σk is activated. For the
clarity, we refer to the switching signal as σ(t) = i
out this study.

The matrices of the state space system Ai(θ)
ject to uncertainties in the real parameter θj and
real convex polytopic model, that is, [Ai(θ)] ∈ Ω,

Ω =

{
Ai(θ) :=

N∑

j=1

θjAj
i

∣∣∣∣θj ≥ 0,

N∑

j=1

θj = 1

}
.

The use of switched-signal finite-time contro

9
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SIR stochastic model represents a significant advance in
the field of epidemic control. By addressing the challenges
posed by unc
eases, this co
fectively cont
ability to han
them in real
duce control
and decision
for epidemic
of this study
for the syste
controller ba

for the system
be designed.
ity and stabil
the following

Definition 4

dx(t) =

x(t0) =

is said to be
relation to (c

xT (

where c1 > 0

Definition 4

dx(t) =[Aj
i x

x(t0) =x0 ∈

is said to be
such that

dx(t

is finite-time
if

xT (

where c1 > 0

Definition 4
t ∈ [t0, T ] =
continuities o

Then the
(ADT) and N

Lemma 4.4. [55] For the stochastic system (15), suppose
that there exist a C 2 function V (x), two class K∞ func-

sfying

(18)

3(|x|).
(19)

quadrat-

15), and
on Ω ∈
d an Ito

t

Hessian

nonneg-

re finite-

and ma-
positive
that the

(20)

(21)

ms meet
y will be

(22)

(23)
Jo
ur

na
l P

re
-p

ro
of

ertainty and randomness in the spread of dis-
ntrol strategy provides a powerful tool to ef-
rol outbreaks and protect public health. The
dle multiple control inputs and switch among
time, guarantee finite-time convergence, re-
effort, and provide probabilistic predictions
s makes this approach a promising solution
control in a stochastic environment. The goal
is to develop finite-time stability constraints
m (12) and then construct a state feedback
sed on those conditions.

u(t) = Kix(t) (14)

(12), where Ki denotes the gain matrices to
First, we define finite-time stochastic stabil-
ization for unforced stochastic systems using
definition.

.1. [55] Stochastic switched system

Aj
i x(t)dt+ Cx(t)dw(t), t ∈ [t0, T ] = Ω,

x0 ∈ Rn, (15)

finite-time stochastically stable (FTSS) in

1, c2, T,R), if

0)Rx(0) < c1 ⇒ E[xT (t)Rx(t)] < c2,

, c2 > c1.

.2. [55] Stochastic switched control system

(t) + Biu(t)]dt+ Cx(t)dw(t), t ∈ [t0, T ] = Ω,

Rn, (16)

FTSS, if there exists a control u(t) = Kix(t),

) =[Aj
i + BiKi]x(t)dt+ Cx(t)dw(t), (17)

stochastically stable with respect to (c1, c2, T,R),

0)Rx(0) < c1 ⇒ E[xT (t)Rx(t)] < c2,

, c2 > c1.

.3. Consider the switching signal σ and scalar
Ω, let Nσ(t, T ) represent the number of dis-
f σ over [t, T ]. If

Nσ(t, T ) ≤ N0 +
T − t

τa
.

constant τa is called the average dwell time

0 the chatter bound.

tions α1 and α2, and a class K function α3, sati

α1(|x|) ≤ V (x) ≤ α2(|x|),

LV (x) =
∂V

∂x
h(x) +

1

2
Tr{gT (x)∂

2V

∂x2
g(x)} ≤ −α

Then, the equilibrium x = 0 of (15) is globally
ically stable.

Remark 4.5. Let x(·) is an Ito process fulfills (
g(·, ·) a twice continuously differentiable function
Rn. Then the procedure y(t) := g(t, x(t)) is carrie
procedure once more, and

dy =

{
∂g(t, x)

∂t
+ (∆xg(t, x))

T Aj
i x(t)

+
1

2
Tr{(Cx(t))T (Cxg(t, x))Cx(t)}

}
d

+ (∆xg(t, x))
T Cx(t)dw(t).

where ∆x and Cx represent the gradient and the
matrix in relation to x.

Lemma 4.6. (Gronwall inequality) Let ϑ(t) be a
ative function such that

ϑ(t) ≤ C +A

∫ t

0

ϑ(s)ds, 0 ≤ t ≤ T,

where C, A ≥ 0. Then, we have

ϑ(t) ≤ CeAt, 0 ≤ t ≤ T.

5. Finite-Time Stability

In this part, we will focus on the mean squa
time stable (MSFTS) of the SSLPV system (15).

Theorem 5.1. Given scalars (c1, c2, T ), c1 < c2,
trix R, if there exist scalars α > 0, µ̄i ≥ 1, and
definite symmetric matrix Pi ∈ Rn×n, i ∈ S, such
following LMIs hold:

[
P̃iA

j
i + (P̃iA

j
i )

T − αP̃i CT P̃i

∗ −P̃i

]
< 0,

P̃i ≤ µ̄iP̃j ,

among them P̃i = R
1
2PiR

1
2 . Then, if the subsyste

the following conditions for switching signals, the
finite-time stable with respect to (c1, c2, T,R),

τsbi ≥ τ∗bi =
T slogµ̄i

log[ c2αPi

c1ᾱPi
]− αiT s

(i ∈ Ss),

τsbi ≤ τ∗bi = − logµ̄i

αi
, (i ∈ Su),

10
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where T s =
∑

i∈Ss
T s
i (0, T ) and Tu =

∑
i∈Su

Tu
i (0, T ).

Proof Consider the following Lyapunov function:

Using Lem
(15), we have

dVi(x(t))

where

LVi(x

When the

Pi

By using
alent to (20)

Moreover
terval [tk, t] a
have the follo

E[Vi(x(t))

With Lem

E

Noticing

and we get

Combinin

E{

By using
not difficult t

E{Vi(x)} ≤ µ̄

≤
∏

i∈

e
∑

i∈

Accordingly, to the derivation, the following two in-
equalities hold:

(34)

(35)

)

0,T )
u
bi

logµ̄i

0,T )
u
bi

logµ̄i

(36)

(37)

(38)

(39)

(40)

ite-time
2

S of the
Jo
ur

na
l P

re
-p

ro
of

Vi(x(t)) = xT (t)Pix(t). (24)

ma 4.4, along the trajectory of the system
the following.

= LVi(x(t))dt+ 2xT (t)PiCx(t)dw(t), (25)

(t)) =2xT (t)PiA
j
i x(t)− αxT (t)Pix(t)

+ xT (t)CTPiCx(t) + αVi(x(t))

=xT (t)

(
PiA

j
i + (PiA

j
i )

T − αPi

+ CTPiC
)
x(t) + αVi(x(t)).

following conditions are met, it is clear that

Aj
i + (PiA

j
i )

T − αPi + CTPiC < 0. (26)

Schur complement lemma, then (26) is equiv-
and guarantee with α > 0

LVi(x(t))− αVi(x(t)) < 0 (or) (27)

LVi(x(t)) < αVi(x(t)). (28)

, integrating both sides of (27) over the in-
nd taking the mathematical expectation, we
wing.

] < E[Vi(x(tk))] + αi

∫ t

tk

E[Vi(x(s))]ds. (29)

ma 4.6, we get

[Vi(x(t))] < E[Vi(x(tk))]e
αi(t−tk). (30)

that

x(tk) = x(t−k ),

Vi(x(tk)) ≤ µ̄iVj(x(t
−
k )). (31)

g (30) and (31), we have the following.

Vi(x)} < µ̄ie
αi(t−tk)E{Vj(x(t

−
k )}. (32)

Definition 4.3, the connection of (32), it is
o check within t ∈ [0, T ],

ie
αi(t−tk)E{Vj(x(t

−
k−1)}

Ss

µ̄
Ns

i (0,T )
i

∏

i∈Su

µ̄
Nu

i (0,T )
i

Ss
αiT

s
i (0,T )+

∑
i∈Su

αiT
u
i (0,T )E{Vσ(0)(x(t0))}. (33)

E{Vi(x)} = E{xT (t)P̄ix(t)}
E{xT (t)R

1
2 P̄iR

1
2x(t)}

> αPi
E{xT (t)Rx(t)},

and

Vσ(0)(x(0))e
αit ={xT (0)R

1
2Pσ(0)R

1
2x(0)}

≤ {ᾱPi
xT (0)Rx(0)}eαit

≤ {ᾱPic1}eαiT .

Then, combined with (33)-(35), one has

E{xT (t)Rx(t)} ≤
[ᾱPi

c1]
∏

i∈Ss
µ̄
Ns

i (0,T )
i

∏
i∈Su

µ̄
Nu

i (0,T
i

1

× e
∑

i∈Ss
αiT

s
i (0,T )+

∑
i∈Su

αiT
u
i (0,T )

αPi

,

=
[ᾱPi

c1]e

∑
i∈Ss

Ts
i (0,T )

τ̂s
bi

logµ̄i+
∑

i∈Su

Tu
i (

τ̂

1

× e
∑

i∈Ss
αiT

s
i (0,T )+

∑
i∈Su

αiT
u
i (0,T )

αPi

,

=
[ᾱPi

c1]e

∑
i∈Ss

Ts
i (0,T )

τ̂s
bi

logµ̄i+
∑

i∈Su

Tu
i (

τ̂

1

× e−αsTs+αuTu

αPi

.

Rewrite (43) and (43) as follows.

[ᾱPic1]µ̄
Ts

τs
bi

i e−αsT s

αPi

< c2,

and

logµ̄i

τubi
+ αu < 0, Tu ≥ 0.

Then, sub (37) and (38) in (36), we get

E{xT (t)Rx(t)} ≤ c2e

[
logµ̄i
τu
bi

+αu
]
Tu

,

In other words,

E{xT (t)Rx(t)} ≤ c2.

With respect to Definition 4.1, this implies the fin
stability of system (15). The proof is complete.

6. Controller Design

In this part, we will concentrate on the FTS
SSLPV system (17).

11
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Theorem 6.1. Given scalars (c1, c2, T ), c1 < c2, and ma-
trix R, if there exist scalars α > 0, µ̄i ≥ 1, and positive
definite symm
gular matrice

Then, if the
switching sig
spect to (c1,

τsbi ≥

τsbi ≤

where T s =
Proof Usin
loop system (
any switching

where (1, 1) =

and post-mul

[
P−1
i

∗ Pi

Then it c

where ∆ = (A
Setting Xi =
the gains of t

7. Related

Some earl
27, 31, 28].
pulsive switc
function tech
time approac
tions, demon
and finite-tim
in [34]. The
state transiti

for the positive linear systems. Further, sufficient condi-
tions for a class of switching signals with average dwell

ed posi-
tudy on
research
Markov
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the pop-
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The re-
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es if the
so found
effective
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etric matrix Xi ∈ Rn×n, i ∈ S and nonsin-
s Gi such that the following LMIs hold:

[
∆ XT

i CT

∗ −Xi

]
< 0, (41)

X̃i ≤ µ̄iX̃j . (42)

subsystems meet the following conditions for
nals, they will be finite-time stable with re-
c2, T,R),

τ∗bi =
T slogµ̄i

log[
c2αX

−1
i

c1ᾱX
−1
i

]− αiT s
, (i ∈ Ss), (43)

τ∗bi = − logµ̄i

αi
, (i ∈ Su), (44)

∑
i∈Ss

T s
i (0, T ) and Tu =

∑
i∈Su

Tu
i (0, T ).

g Theorem 5.1, we can prove that the closed-
17) is FTSS with respect to (c1, c2, T,R) for
signal:

[
(1, 1) CTPi

∗ −Pi

]
< 0, (45)

Pi(A
j
i +BiKi)+(Aj

i +BiKi)
TPi−αPi. Pre-

tiplying (27) by

[
P−1
i 0
∗ P−1

i

]
,

0
−1

]T [
(1, 1) CTPi

∗ −Pi

] [
P−1
i 0
∗ P−1

i

]
. (46)

an be derived that
[
∆ P−1

i CT

∗ −P−1
i

]
< 0. (47)

j
i + BiKi)P

−1
i + P−1

i (Aj
i + BiKi)

T − P−1
i α.

P−1
i , KiXi = Gi, (41) can be obtained, and

he controller (14) are given by Ki = GiX
−1
i .
2

works

y literature on FTS can be found in [23, 26,
The finite-time H∞ control of nonlinear im-
hing models. They used various Lyapunov
niques and the mode-dependent average dwell
h for establishing various parametric condi-
strating that the model is finite-time bounded
e H∞ control was addressed by the authors
FTS analysis was carried out by using the
on matrix and copositive Lyapunov function

time are designed to attain FTS for the switch
tive linear systems done in [35]. Further, the s
the stochastic SIR model was reported by various
works [52, 51, 53, 45]. The authors of [36] used
semigroup theory to show that the stochastic SIR
model with regime switching has a single stable st
distribution. This means that, over time, the m
converge to a steady state in which the number o
tible individuals, infected individuals, and recove
viduals remains constant.
Remark 7.1. Linear Matrix Inequalities (LMIs
used in the context of a stochastic SIR epidemic m
provide stability and robustness guarantees for th
and management of infectious diseases, such as
19. For example, LMIs can be used to formulate a
optimization problems that aim to minimize the s
the disease, subject to constraints on control eff
source allocation, and other parameters. LMIs
be used to analyze the robustness of control stra
uncertainties in the model parameters, such as
of transmission, the efficacy of control measures,
number of susceptible individuals. Furthermore, L
be used to design controllers that can respond to
in the spread of the disease, such as the introdu
new strains or mutations, by switching between
control strategies. These applications demonstrate
satility and usefulness of LMIs in addressing com
uncertain systems and their importance in contro
spread of infectious diseases.

8. Numerical simulation of the model

In this section, we check the accuracy and u
of the offered methods for the stabilization pro
bio-mathematical switching systems with finite-t
straints.

8.1. Case study for Covid model in Japan

In this subsection, we use data from newly
individuals in Tokyo. Japan has implemented seve
sures to control the spread of COVID-19, including
testing, contact tracing, and quarantine measur
study used a compartmental model, which divides
ulation into different compartments based on thei
status (susceptible, exposed, infected, recovered, e
model was calibrated using data on the number of
cases and deaths in Japan and was used to simu
spread of the disease under different scenarios.
sults of the study showed that Japan’s measures
fective in controlling the spread of the disease,
the country was still at risk of a resurgence of cas
measures were relaxed too quickly. The study al
that testing and quarantine measures were more
than contact tracing alone in controlling the sprea

12
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disease. It also highlighted the importance of continuing
to implement measures such as testing, contact tracing,
and quaranti
Table 4 show
the simulatio

Parameter
Recruitmen
Contact rat
Inhibitory e
Natural dea
Rate of reco
Disease-rela

Table 4: Defau
data.

The S(0)
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Then, S(0) h
initial infecte
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8336599 [60].
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• Analysi
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• Contro
feedbac
wards t
could in
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the real
adjust
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The follo
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of effective co

8.2. Control

The simu
values as in(

50

8

9
×106

S(t)

I(t)

tial values
are taken

50

S(t)

I(t)

duals over
able 4 and

50

S(t)

I(t)

ion of the
are taken

y. More-
eters of

he block
2.
1, c2 =

1}, C =
m equa-
n ᾱP1

=
DT can
egarding
.5 < τ∗b2
, the de-
Jo
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ne even after the number of cases decreases.
s the numerical values of parameters used in
n.

Symbol Value Source
t rate A 5 [56]
e β 0.2 [57]
ffect k 0.2 Assumed
th rate δ 0.0111 [58]
very γ 0.1 [57]
ted mortality ϵ 0.001 Assumed

lt values of the parameters of model (5) with Covid

is the initial value of S when R = 0, and
ding time is the start of the infection, t = 0.
as the form S(0) = N − I(0). Suppose the
d population I(0) is the number of positive
mber 20, 2022, which is 15, 883 [59] and N =
This study would involve the use of state

trol theory to model the spread of COVID-
ment control strategies in a finite time. The
s could be taken:

g: Develop a mathematical model of the spread
ID-19 in a specific region or population, tak-
account relevant factors such as the number
ptible individuals, the number of infected in-
ls, and the number of recovered individuals.

s: Analyze the stability of the model and de-
the equilibrium points.

l design: Based on the analysis, design a state
k control law that will drive the system to-
he desired equilibrium in finite time. This
volve implementing measures such as reduc-
tact rates between individuals, increasing test-
contact tracing, or implementing vaccine dis-
n strategies.

ion: Simulate the controlled system and com-
e results with the uncontrolled system.

entation: Implement the control strategies in
world, monitor the spread of the disease, and
the control strategies as necessary based on
lts.

wing study could provide valuable insights
d of COVID-19 and inform the development
ntrol strategies to mitigate its impact.

of Epidemic Models

lation findings are based on the parameter
4). In Figs. 4-7, the effect of the stochastic

0 5 10 15 20 25 30 35 40 45

t

0

1

2

3

4

5

6

7

S(
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I(t
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Figure 19: The solution of the stochastic model (5) with ini
S(0) = 8, 320, 716, I(0) = 15, 883. The parameter values
as in Table 4 and σ1,2 = 0.1.
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Figure 20: The evolution in time of the mean of the indivi
1,000 trajectories. The parameter values are taken as in T
σ1,2 = 0.1.
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Figure 21: The evolution in time of the standard deviat
individuals over 1,000 trajectories. The parameter values
as in Table 4 and σ1,2 = 0.1.

system without a controller is depicted graphicall
over, in the simulation reason, the specific param
the biological model are as appeared in (4). T
diagram of the proposed model is shown in Fig 2

Choose the values α1 = 1.05, α2 = −0.88, c1 =
7, µ̄1 = 0.5, µ̄2 = 1.5, T = 15, R = diag{1,
diag{1, 1}, and the system matrices are get fro
tion (10). With these input values, we can obtai
0.7365, αP2

= 0.0347 and the mode-dependent A
be calculated as τ∗b1 = 1.9307, τ∗b2 = 0.7631. R
Theorem 6.1, we know that for the analysis τub1 = 0
and τsb2 = 1.3 > τ∗b1, the system is FTS. Moreover
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Figure 22: Sch
analysis of SIR

signed contro
model (16) is
inequality (L
6.1 with con
able solution
of which are

Figure

For the sa
x(0) = [−1.5
control trajec
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conditions. A
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ofematic diagram of the proposed finite time stability
model.

ller is built so that the investigated stochastic
finite-time stable. Solving the linear matrix
MI)-based conditions specified in Theorem
ventional LMI toolbox software yields a vi-
that is guaranteed by a set of matrices, some
presented below.

K1 =

[
− 4.0136 2.4093

3.5288 −3.4489

]
,

K2 =

[
−4.1326 2.9775

3.8028 −4.1608

]
,

K3 =

[
−4.2330 2.3720

3.4431 −3.7176

]
,

K4 =

[
−2.1799 1.6732

1.4616 −3.0741

]
.

23: The wiener process (1000 realizations).

ke of simulation, we assume the initial state
, 2]T . The state responses and associated
tories of the stochastic switching model stud-
in Figs. 24-25, respectively, based on these
s shown in Figure 26, the state trajectories

Figure 24: State trajectories with multiple initial conditi
system (16).

Figure 25: State responses in two phase mode.

Figure 26: State trajectories of the system (16).

of the closed-loop system adequately converge to z
though in the appearance of switching rules under
gested control method. Furthermore, the respon
wiener process (1000 realizations) is shown in Fi
This shows the significance of the proposed finite-t
trol strategy. On the other hand, the average dw
of the switching signal is calculated as τa = 1.221
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9. Conclusions
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) The suggested SIR model is quite extensive, and the switched stochastic differential 

equations drive its dynamics. When compare to existing works in Epidemic models, w

consider many factors such as finite-time stability, LPV analysis, stochastic disturbanc

control effect, and unknown parameters.  

 

) Different from exponential/asymptotic stability analysis on infinite-time interval and 

design in the literature. In our paper, the Finite-time (FT) stability criterion of switche

stochastic SIR model is obtained, which is more realistic and theoretical.  

) Good control system should ensure higher performance in addition to stability. Howev

the suggested model makes use of state-feedback control to ensure the performance of

designed model.  

) For the FT stability analysis of the proposed system model with switching approaches

acceptable Lyapunov functional (LF) are developed using integral inequality techniqu

and several new suitable criteria, which may be expressed in terms of linear matrix 

inequalities (LMIs).  

) Numerical simulations are provided as a last step to show the efficacy and application

the ideas presented. 
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